Application of Bayesian Networks for Learner Assessment in E-Learning Systems
نویسنده
چکیده
Traditionally, e-Learning content is delivered without taking the learner’s traits into account. Content delivered to the learner should be personalized based on the learner profile so that learning can be effective. Also, assessment of a learner’s learning objective is normally done by posing a set of questions without documenting the student’s capabilities. A school of thought envisages assessing the real caliber of the student by posing questions that are linearly complex as the number of questions posed increase. This paper discusses the application of stochastic process model and Bayesian belief networks for learner assessment. The authors also discuss how it can be integrated into ongoing research into application of mobile agent technology in implementing case-based reasoning for content delivery in e-Learning systems. The implementation observations of such implementation vis-à-vis traditional assessment are also documented.
منابع مشابه
A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کامل Structure Learning in Bayesian Networks Using Asexual Reproduction Optimization
A new structure learning approach for Bayesian networks (BNs) based on asexual reproduction optimization (ARO) is proposed in this letter. ARO can be essentially considered as an evolutionary based algorithm that mathematically models the budding mechanism of asexual reproduction. In ARO, a parent produces a bud through a reproduction operator; thereafter the parent and its bud compete to survi...
متن کاملRelationship between Students’ Readiness for e-Learning, Learner Satisfaction and Student Performance: The case of a post-graduate education program
The aim of this study was to explore students’ readiness for e-learning during Covid-19, determining learner satisfaction with online learning experiences and their relations with students’ success. A descriptive-analytical research design and Spearman correlation coefficient were used in this study. Population under study, which was considered as the sample, included students of a course in a ...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کامل